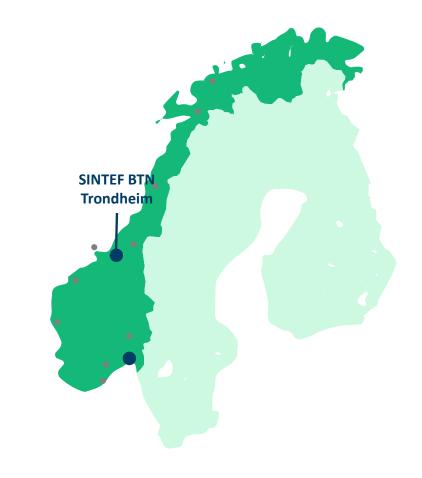
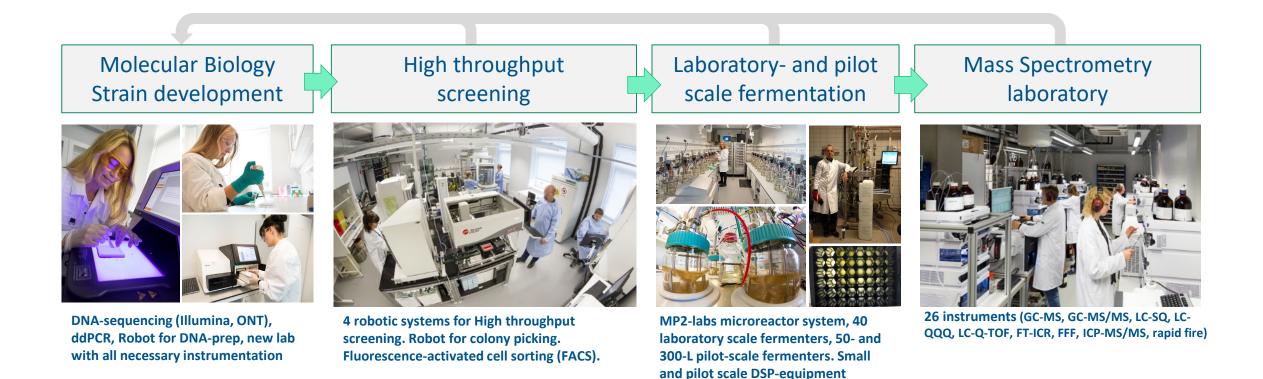
SINTEF

Harvesting the riches of earth through bioprospecting and biotechnological exploitation of genomic data.


Tonje M. B. Heggeset and Ingemar Nærdal SINTEF Industry

Technology for a better society




#### Outline

- Who are we and what do we do
- Genomic data in an industrial setting:
  - Organism-focus vs. gene/product-focus
- Bioprospecting
- Examples





# Biotechnology and Nanomedicine covers all the steps from bioprospecting to bioprocess development and analytics



#### Applied within: Pharmaceuticals, vaccines, biomaterials, enzymes, food, feed chemicals, and energy

Organisms of relevance: **fungi** (pharmaceuticals, enzymes, production hosts), **thraustochytrids** (n3-fatty acids; food/feed), **kelp/seaweed** (biomaterials, food, feed), microbiota/symbionts in interaction with **sponges** or **microalgae** (pharmaceuticals)



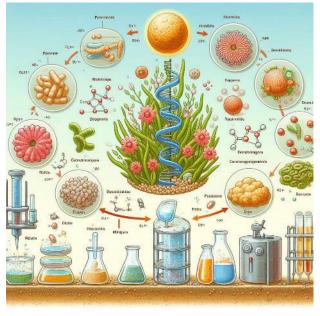
## **Biotechnological exploitation of sequencing data**

#### **Organism focus**

- Understanding the biology of industrially important organisms and their microbiota
  - (Bacteria)
  - Yeasts and fungi
  - Microalgae
  - Thraustochytrids (protists)
  - Sponges (and their symbionts)
  - Seaweed
  - Plants
- Use as direct producers or host for recombinant expression of eukaryote genes/gene clusters
  - Yeasts and filamentous fungi
  - Plants (e.g., tobacco, cereals, legumes, vegetables)
  - Microalgae

#### **Gene/product focus**

- Bioprospecting
  - Enzymes for the synthesis or degradation of biomaterials and petrochemical materials
    - Bioremediation of pollutants
    - Biodegradation
    - Enzymes for biorefinery purposes
  - Cells and gene clusters to produce
    - Pharmaceuticals and bioactive compounds
    - Polysaccharides
    - Pesticides, herbicides, ...

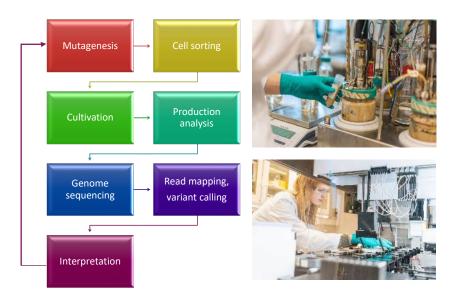

| M000169.1 (Aspergillus fumigatus Af293) |                 |           |           |                                                                                                     |            |                   |
|-----------------------------------------|-----------------|-----------|-----------|-----------------------------------------------------------------------------------------------------|------------|-------------------|
|                                         |                 |           |           |                                                                                                     |            |                   |
| Region                                  | Туре            | From      | То        | Most similar known cluster                                                                          |            | Similarity        |
| Region 1.1                              | T1PKS @         | 332,044   | 387,669   |                                                                                                     |            |                   |
| Region 1.2                              | NRPS of         | 2,655,699 | 2,714,887 | nidulanin A 🗗                                                                                       | NRP        | 75%               |
| Region 1.3                              | terpene 🖪       | 3,482,224 | 3,503,445 |                                                                                                     |            |                   |
| Region 1.4                              | betalactone III | 4,019,547 | 4,053,219 |                                                                                                     |            |                   |
| Region 1.5                              | NRPS @          | 4,668,800 | 4,723,141 | metachelin C/metachelin A/metachelin A-CE/metachelin B/dimerumic acid 11-mannoside/dimerumic acid 🖬 | NRP        | 25 <mark>%</mark> |
| Region 1.6                              | T1PKS I         | 4,838,326 | 4,918,979 | burnettiene A/preburnettiene B/preburnettiene A II                                                  | Polyketide | 75%               |

https://fungismash.secondarymetabolites.org/upload/fungal-example/index.html



### **Bioprospecting**

- The discovery and commercialization of products based on biological resources. This includes e.g., microorganisms, algae, plants, and animals, and useful genetic and biochemical properties of these organisms.
- Not a modern phenomenon
  - Medicinal use of plants for thousands of years (no chemical knowledge)
  - Morphine from poppy commercialized in 1827
  - Penicillin discovered in 1928
- Speed of discovery accelerated through genomic bioprospecting
- Wide range of relevant targets
  - Pharmaceuticals, nutraceuticals, veterinary medicines
  - Enzymes
  - Vaccine targets
  - Cosmetics/personal care products
  - Fertilizers, pesticides, and herbicides
  - Bioremediation and Biosensors

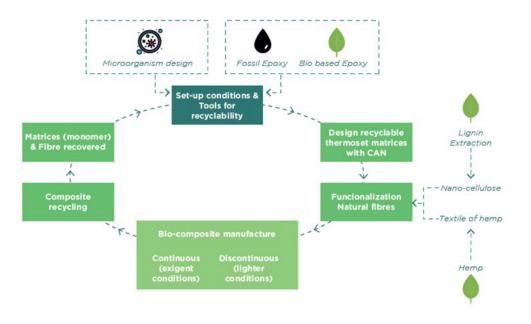



Bioprospecting according to Microsoft Copilot





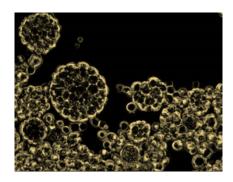
- Excellent sources for pharmaceuticals \*
  - Novel compounds
  - Improved production strains and processes
  - Strain development regimes uses genome sequencing to gain insight into the biosynthesis of the compound and by-products
- Example: New API process for Leo Pharma
  - Leo Pharma (DK) collaborated with SINTEF for development of a new production strain and a suitable process for production of the antibiotic Fusidic acid.
  - SINTEF contributed with competence in strain development, molecular biology, and bioprocess development
  - The work relied heavily on SINTEFs competence, efficient labs and infrastructure for High Throughput Screening and fermentation
  - Financed by Leo Pharma

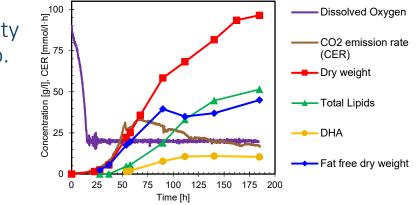







#### Fungi

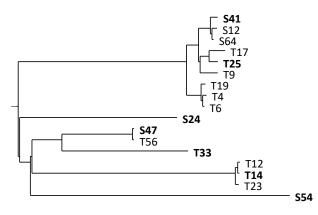

- Heterologous expression host
- Source for important industrial enzymes §
  - Laccases & peroxidases
  - Cellulases & xylanases
  - Lipases etc.
- The ESTELLA project is generating bio-based epoxy composites, with increased biodegradability and recyclability
- SINTEF role: find microorganisms and enzymes that can aid the biodegradation/recycling of the materials.
  - Enriching for microorganisms that can grow utilizing the materials as sole carbon source
  - Mining for novel enzymes, esp. laccases, peroxidases, and epoxide hydrolases (typically found in fungi) that can degrade the materials
- Enzyme discovery pipelines established in SEP Agree

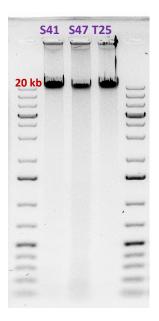







- Heterotrophic protists, widely distributes in marine ecosystems
- Studied at SINTEF/NTNU for 20+ years
- Important source for n-3 fatty acids (DHA and EPA), important for fish farming; squalene (vaccine adjutant), and carotenoids like astaxanthin
- Aurantiochytrium spp. T66 and S61 sequenced (Liu et al. 2016\*, unpublished)
- Accumulates fatty acids during N-starvation
- Global transcriptome analysis showed that N-starvation mainly affects the Fatty acid Synthase and less pronounced the PUFA-synthase in *Aurantiochytrium* sp. T66 (Heggeset et al 2019<sup>#</sup>).
- Recombinant expression of a Δ12-desaturase-like enzyme from *Aurantiochytrium* sp. T66 into *A. limacinum* SR21 revealed that this gene encodes a Δ9-desaturase accepting C16:0 as a substrate (Rau et al 2021<sup>§</sup>)






## Thraustochytrids

- Strain collection with 87 isolates from water, sediments, and seaweed samples from 17 locations in Norway (and 10+ isolates also from other locations in Europe)
- A subset classified by 18S rDNA sequencing
- Genomic DNA extracted from 7 isolates, 3 selected for whole genome Nanopore sequencing at NMBU as part of EBP-Nor
  - Thraustochytrium spp. S41 and T25
  - Thraustochytriidae sp. S47
- In the internal SINTEF project SUSFF acetate produced by CO<sub>2</sub>-fermenting bacteria is used as sole C-source for cultivation of thraustochytrids. Insight into the genomics and biology of the organism is of high importance when adapting growth media and setting up the cultivation











#### Kelp and brown seaweed

- Producer of important biomaterials like alginate and fucoidan;
- Alaria esculenta (bladderlocks) and Saccharina latissima (sugar kelp) cultivated in Norway
- Alginate studied at SINTEF and NTNU since the 1950s
- From bacterial studies, alginate shown to be synthesized as polymannuronic acid, then mannuronan C5 epimerases (MC5E) introduces guluronic acid in the polymer
- Biosynthesis pathways for alginate in brown algae unravelled by genome sequencing of *S. japonica* (Chi et al 2018\*) and *Ectocarpus siliculosius* (Fischl et al 2016<sup>£</sup>)
  - Different families of MC5E, differentially expressed, implying specific roles in the plant life cycle
- Genomes of important species like A. esculenta<sup>#</sup>, S. latissima<sup>+</sup>, and Macrocystis pyrifera (giant kelp)<sup>§</sup> recently released, the quality and availability of annotation varies
- Genomic data provides increased insight into the biology of the organism and <u>may</u> affect the decision making with respect to e.g., where and when and how to inoculate and harvest; how to limit fouling, etc.





\* <u>https://doi.org/10.1007/s00294-017-0733-4</u>

- <sup>£</sup> <u>https://doi.org/10.1093/glycob/cww040</u>
- <sup>#</sup> <u>https://doi.org/10.1111/mec.16714</u>
- <sup>+</sup> https://www.ncbi.nlm.nih.gov/datasets/genome/GCA\_034768055.1/
- § https://doi.org/10.1016/j.dib.2022.108068



Juvenile sugar kelp cultivated on twine (Photo: SINTEF Ocean)



## **Sponges (Porifera)**

- Lives in symbiosis with a large number of microorganisms<sup>£</sup>
  - microbes responsible for the degradation of organic matter<sup>\$</sup>
  - ~50% (i.e., 2659) of new marine natural products reported from invertebrates in the 2010s were sponge associated<sup>#</sup> (likely produced by the symbionts)
- MARBLES sampled sponges in the Trondheim fjord, for bioprospecting of the symbiont microbiomes
- Materials shared with EBP-Nor for sponge whole genome sequencing
- Extraction of HMW DNA is difficult; several kits and approaches tested
  - Chopping rather than cryo-grinding gave the best results
  - *P. ventilabrum* targeted by others (published by ERGA/ A. Riesgo Jan 2024)\*
  - Antho dichotoma excluded as DNA extraction failed
  - G. barretti promising, but then published by Steffen et al. Aug. 2023<sup>§</sup>
  - M. lingua promising

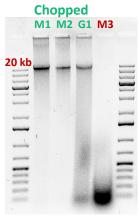








Phakellia ventilabrum





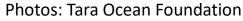

Geodia barretti

Antho dichotoma

Mycale lingua




<sup>£</sup> https://doi.org/10.1038/ncomms11870
<sup>\$</sup> https://doi.org/10.1038/s41396-020-0706-3
# https://doi.org/10.3390/md20060389
\* https://www.ncbi.nlm.nih.gov/datasets/genome/GCA\_963921505.1/
<sup>§</sup> https://doi.org/10.1093/g3journal/jkad192




#### **Exploring the ocean**

- AtlantECO aims to develop and apply a novel, unifying framework that provides knowledge-based resources for a better understanding and management of the Atlantic Ocean and its ecosystem services.
- Scientific pillars: microbiomes; plastics and ٠ plastisphere; seascape and conductivity
- Relevant activities:
  - Bioprospecting for bioproducts like e.g., pharmaceuticals or enzymes able to digest plastics
  - Study the impact of offshore industry (oil, gas, diamond mining) on marine microbiomes
  - Development of genetic sensors for harmful microorganisms (e.g. algae)









#### Acknowledgements

The Research Council of Norway



RCN #227005

**ThraustoENG** 

RCN #269432

AurOmega

https://www.digitallifenorway.org/projects/auromega/

RCN #294946



https://www.sintef.no/projectweb/seaweedplatform/

RCN # 309558 https://sfi-ib.com/



ЩUQ ♥ EARTH

BIOGENOME NOR PROJECT

RCN #326819 https://www.ebpnor.org/

#### SINTEF-funded:



**SEP Agree** 



#### Funded by the European Union



This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 862923.

https://www.atlanteco.eu/



This project has received funding from the European Union's Horizon 2020 research and innovation programme under Grant Agreement no. 101000392

https://marblesproject.eu/



This project has received funding from the European Union's Horizon Europe research and innovation programme under grant agreement 101058371

https://estellaproject.eu/

#### Private funding:





## Technology for a better society tonje.heggeset@sintef.no